## I. K. Konchits

Inzhenerno-Fizicheskii Zhurnal, Vol. 9, No. 4, pp. 533-535, 1965

UDC 536,212

So far, the heat conductivity of semiconductors has clearly been insufficiently studied, although the role of the thermal characteristics in technical applications is well known [1]. This situation can be attributed, in the first instance, to the absence of reliable, simple methods, not requiring complex and expensive apparatus, for measuring the heat conductivity of semiconductors [2, 3]. In our work in the field of semiconductors we have been keenly aware of this. Therefore, to determine the heat conductivity of solid semiconductors we have utilized successfully the bridge method [4, 5].

At our request, F. S. Ageshinym designed a special apparatus, a thermal bridge, analogous to the electric Wheatstone bridge. In the arms of this bridge "flows" not electric current, but a heat flux due to the temperature difference between a heater  $T_2$  and cooler  $T_1$ . The bridge for relative measurement of the heat conductivity of solid semiconductors is mounted on a thermally insulated board (figure).

The apparatus consists of three arms of known heat conductivity  $\lambda_S$ ,  $\lambda_1$ ,  $\lambda_2$ , and one arm of the test semiconductor, the heat conductivity of which  $\lambda_X$  is to be measured.

To one of the diagonals of the bridge is applied the temperature difference  $T_2 - T_1$  of the heater and the cooler. The heater is fixed to the insulated board and takes the form of a brass cylinder, on which a high-resistance wire heater is wound. The cooler is a water-cooled brass tube.

The test sample, standard semiconductor and thermochord are cylindrical solids of the same diameter. The thermochord comprises two arms  $l_1$  and  $l_2$  of the bridge. Their length is measured by a micrometer scale. The lateral surface of all the cylinders must be smooth.



Layout of bridge for relative measurement of the heat conductivity of solid semiconductors: 1) heater; 2) cooler; 3) test semiconductor; 4) standard semiconductor; 5) thermochord; 6) coupling; 7) thermochord slide; 8) thermocouple with galvanometer; 9) screw for moving slide; 10) screw for making contact between test and standard semiconductors and thermochord and heater and cooler; 11) reading scale (special micrometer).

In the other diagonal of the bridge there is inserted a "null instrument," an indicator consisting of a thermocouple and a sensitive galvonometer.

For a more reliable thermal contact between these cylinders and the heater and cooler, a small depression was made in the heater cylinder and in the cooler tube at the point of contact, the diameter being such that the cylinders penetrated into them with a close fit. The test sample and standard, two cylinders of the same size, are kept in contact with the aid of a metal coupling with a small hole for connecting one junction of a thermocouple; the other junction is in contact with the slide on the thermochord, for which purpose the slide also has a hole. Mechanical contact between these cylinders and the thermochord and the heater and cooler is achieved by means of a set screw. The thermal bridge is handled in the same way as the electrical Wheatstone bridge.

The bridge is balanced by moving the slide along the thermochord. The slide is a sleeve with a pointer. This sleeve is moved along the thermochord by means of a screw. The heat conductivity is calculated from the formula

$$\lambda_x = \lambda_s \frac{l_1}{l_2} ,$$

where  $\lambda_{X}$  and  $\lambda_{S}$  are the heat conductivities of the test and standard semiconductors.

## REFERENCES

1. N. M. Roizin, N. S. Mostovlyanskii, and R. K. Strod, Fizika tverdogo tela, 5, no. 4, 1963.

2. A. F. Ioffe, Physics of Semiconductors [in Russian], AN SSSR, 1957.

3. G. M. Kondrat'ev, Thermal Measurements [in Russian], Mashgiz, 1957.

4. I. K. Konchits, Elektrichestvo, no. 10, 1962.

5. F. S. Zavel'skii and M. S. Zavel'skii, Avtomatika i telemekhanika, 12, no. 2, 1951.

5 January 1965 Electrical Engineering Institute of Communications, Moscow